Kamis, 28 Maret 2013

Praktikum Kimia Fisika Viskometri

    Hi guys, hari ini aku mau posting daftar pustaka praktikum tentang viskometri nih. Nggak usah kebanyakan ngomong, langsung lihat aja nih. :) 
      Viskositas suatu zat cairan murni atau larutan merupakan indeks hambatan aliran cairan. Viskositas dapat diukur dengan mengukur laju aliran cairan, yang melalui tabung berbentuk silinder. Cara ini merupakan salah satu cara yang paling mudah dan dapat digunakan baik untuk cairan maupun gas. 
(Bird, 1993).
     Viskositas adalah indeks hambatan aliran cairan. Viskositas dapat diukur dengan mengukur laju aliran cairan yang melalui tabung berbentuk silinder. Viskositas ini juga disebut sebagai kekentalan suatu zat. Jumlah volume cairan yang mengalir melalui pipa per satuan waktu.
ŋ          = viskositas cairan
V         = total volume cairan
t           = waktu yang dibutuhkan untuk mencair
p          = tekanan yang bekerja pada cairan
L          = panjang pipa 
(Bird, 1993).
      Makin kental suatu cairan, makin besar gaya yang dibutuhkan untuk membuatnya mengalir pada kecepatan tertentu. Viskositas disperse koloid dipengaruhi oleh bentuk partikel dari fase disperse dengan viskositas rendah, sedang system disperse yang mengandung koloid-koloid linier viskositasnya lebih tinggi. Hubungan antara bentuk dan viskositas merupakan refleksi derajat solvasi dari partikel. 
(Respati, 1981).
       Bila viskositas gas meningkat dengan naiknya temperature, maka viskositas cairan justru akan menurun jika temperature dinaikkan. Fluiditas dari suatu cairan yang merupakan kelebihan dari viskositas akan meningkat dengan makin tingginya temperature.
 (Bird,1993).
Cara-cara penentuan viskositas 
a.  Pada viscometer Ostwald yang diukur adalah waktu yang dibutuhkan oleh sejumlah tertentu cairan untuk mengalir melalui pipa kapiler dengan gaya yang disebabkan oleh berat cairan itu sendiri. Pada percobaan sebenarnya, sejumlah tertentu cairan (misalnya 10 cm3, bergantung pada ukuran viscometer) dipipet kedalam viscometer. Cairan kemudian dihisap melalui labu pengukur dari viscometer sampai permukaan cairan lebih tinggi daripada batas a. cairan kemudian dibiarkan turun ketika permukaan cairan turun melewati batas a, stopwatch mulai dinyalakan dan ketika cairan melewati tanda batas b, stopwatch dimatikan. Jadi waktu yang dibutuhkan cairan untuk melalui jarak antara a dan b dapat ditentukan. Tekanan ρ merupakan perbedaan antara kedua ujung pipa U dan besarnya disesuaikan sebanding dengan berat jenis cairan.
(Respati,1981).
Berdasarkan hukum Heagen Poisuille :
Untuk air :
Ŋair = πρr4 . ta . pa.g.h / ( 8VL)
Secara umum berlaku :
Ŋx = πρr4 . tx . px.g.h / ( 8VL)
Jika air digunakan sebagai pembanding, maka :
Ŋx / ŋair = tx.ρx / taρa
(Respati,1981)
b.      Viskometer hoppler
Pada viscometer ini yang diukur adalah waktu yang dibutuhkan oleh sebuah bola logam untuk melewati cairan setinggi tertentu. Suatu benda karena adanya gravitasi akan jatuh melalui medium yang berviskositas (seperti cairan misalnya), dengan kecepatan yang semakin besar sampai mencapai kecepatan maksimum. Kecepatan maksimum akan tercapai bila gravitasi sama dengan fictional resistance medium.
(Bird,1993).
            Berdasarkan hukum stokes pada kecepatan bola maksimum, terjadi keseimbangan sehingga : gaya gesek = gaya berat, gaya Archimedes :
6πrVmax = 4/3 r3 bola – ρcair) g
Ŋ = { 2/g r3bola – ρcair) g } / Vmax
Vmax = h / t
dimana : t = waktu jatuh bola pada ketinggian h
Dalam percobaan ini dipakai cara relative terhadap air, harganya :
Ŋa = [ 2/g r2a – ρ1) g ta ] / h
Ŋx = [ 2/g r2x– ρ1) g tx ] / h
Ŋx/ Ŋa = [ (ρx – ρ1) g tx ] / [ (ρa – ρ1) g ta ]
c.       Viscometer cup dan Bob
Prinsip kerjanya sampel digeser dalam ruangan antara dinding luar Bob dan dinding dalam dari cup dimana bob masuk persis ditengan-tengah. Kelemahan viscometer ini adalah terjadinya aliran sumbat yang disebabkan gesekan yang tinggi disepanjang keliling bagian tube sehingga menyebabkan penemuan konsentrasi. Penurunan konsentrasi ini menyebebkan bagian tengah zat yang ditekan keluar memadat. Hal ini disebut aliran sumbat.
 (Bird, 1993).
d.      Viskometer Cone dan Plate
Cara pemakaiannya adalah sampek yang ditempatkan di tengah-tengah papan, kemudian dinaikkan hingga posisi dibawah kerucut. Kerucut digerakkan oleh motor dengan bermacam kecepatan dan sampelnya digeser didalam ruang sempit antara papan yang diam dan kemudian kerucut yang berputar. 
(Bird, 1993).
Konsep Viskositas
           Fluida, baik zat cair maupun zat gas yang jenisnya berbeda memiliki tingkat kekentalan yang berbeda. Viskositas alias kekentalan sebenarnya merupakan gaya gesekan antara molekul-molekul yang menyusun suatu fluida. Jadi molekul-molekul yang membentuk suatu fluida saling gesek-menggesek ketika fluida fluida tersebut mengalir. Pada zat cair, viskositas disebabkan karena adanya gaya kohesi (gaya tarik menarik antara molekul sejenis). Sedangkan dalam zat gas, viskositas disebabkan oleh tumbukan antara molekul. 
(Bird, 1993).
            Fluida yang lebih cair biasanya lebih mudah mengalir, contohnya air. Sebaliknya, fluida yang lebih kental biasanya lebih sulit mengalir, contohnya minyak goreng, oli, madu, dan lain-lain. Hal ini bias dibuktikan dengan menuangkan air dan minyak goreng diatas lanyai yang permukaannya miring. Pasti hasilnya air lebih cepat mengalir dari pada minya goreng atau oli. Tingkat kekentalan suatu fluida  juga bergantung pada suhu. Semakin tinggi suhu zat cair, semakin kurang kental zat cair tersebut. Misalnya ketika ibu menggoreng ikan di dapur, minyak goreng yang awalnya kental, berubah menjadi lebih cair ketika dipanaskan. Sebaliknya, semakin tinggi suhu suatu zat gas, semakin kental zat gas tersebut.
            Perlu diketahui bahwa viskositas atau kekentalan hanya ada pada fluida rill (rill = nyata). Fluida rill / nyata adalah fluida yang kita jumpai dalam kehidupan sehari-hari, seperti air sirup, oli, asap knalpot, dan lainnya. Fluida rill berbeda dengan fluida ideal. Fluida ideal sebenarnya tidak ada dalam kehidupan sehari-hari. Fluida ideal hanya model yang digunakan untuk membantu kita dalam menganalisis aliran fluida (fluida ideal ini yang kita pakai dalam pokok bahasan fluida dinamis) 
(Bird, 1993).
            Satuan system internasional (SI) untuk koifisien viskositas adalah Ns/m2 = Pa.S (pascal sekon). Satuan CGS (centimeter gram sekon) untuk SI koifisien viskositas adalah dyn.s/cm2 = poise (p). Viskositas juga sering dinyatakan dalam sentipolse (cp). 1 cp = 1/1000 p. satuan poise digunakan untuk mengenang seorang Ilmuwan Prancis, almarhum Jean Louis Marie Poiseuille.
1 poise = 1 dyn. s/cm2 = 10-1 N.s/m2
            Fluida adalah gugusan molukel yang jarak pisahnya besar, dan kecil untuk zat cair. Jarak antar molukelnya itu besar jika dibandingkan dengan garis tengah molukel itu. Molekul-molekul itu tidak  terikat pada suatu kisi, melainkan saling bergerak bebas terhadap satu sama lain. Jadi kecepatan fluida atau massanya kecapatan volume tidak mempunyai makna yang tepat sebab jumlah molekul yang menempati volume tertentu terus menerus berubah. 
(while, 1988).
            Fluida dapat digolongkan kedalam cairan atau gas. Perbedaan-perbedaan utama antara cair dan gas adalah : 
a.       Cairan praktis tidak kompersible, sedangkan gas kompersible dan seringkali harus diperlakukan demikian.
b.   Cairan mengisi volume tertentu dan mempunyai permukaan-permukaan bebas, sedangkan agar dengan massa tertentu mengembang sampai mengisi seluruh bagian wadah tempatnya. 
(While, 1988).
       Berdasarkan hukum stokes dengan mengamati jatuhnya benda melalui medium zat cair yang mempunyai gaya gesek yang makin besar bila kecepatan benda jatuh makin besar π = 2r.2d – dm.g.9.s.t (1+2, 4rR). Ketererangan cairan, g = gaya gravitasi, s = jarak jatuh (a – ob), t = waktu bola jatuh, r = jari-jari tabung viskosimeter  (Anekcheiftein,2010)
            Persamaan Navier-stokes (dinamakan dari daude Louis Navier dan Gorge Gabriel Stokes), adalah serangkaian persamaan yang menjelaskan pergerakan dari suatu fluida seperti cairan dan gas. Persamaan-persamaan ini menyatakan bahwa perubahan dalam momentum (percepatan) partikel-partikel fluida yang bergantung hanya kepada gaya viskos tekanan eksternal yang bekerja pada fluida. Kita dapat mengembangkan persamaan gerakan untuk fluida, nyata dengan memperhatikan gaya-gaya yang bekerja pada suatu elemen kecil fluida. Penurunan persamaan ini, yang disebut persamaan Navier-stokes.
(Streeter, 1996).
Definisi Piknometer
            Piknometer adalah alat yang digunakan untuk mengukur nilai massa jenis atau densitas dari fluida. Berbagai macam fluida yang diukur massa jenisnya, biasanya dalam praktikum yang diukur adalah massa jenis oli, minyak goreng, dan lain-lain. Piknometer itu terdiri dari 3 bagian, yaitu tutup pikno, lubang, gelas atau tabung ukur. Cara menghitung massa fluida yaitu dengan mengurangkan massa pikno berisi fluida dengan massa pikno kosong. Kemudian di dapat data massa dan volume fluida, sehingga tinggal menentukan nilai cho/massa jenis (ρ) fluida dengan persamaan = cho (ρ) = m/v 
(Whille, 1988).
Faktor-faktor yang mempengaruhi viskositas :
   1.      Suhu
Viskositas berbanding terbalik dengan suhu. Jika suhu naik maka viskositas akan turun, dan begitu sebaliknya. Hal ini disebabkan karena adanya gerakan partikel-partikel cairan yang semakin cepat apabila suhu ditingkatkan dan menurun kekentalannya.
   2.      Konsentrasi larutan
Viskositas berbanding lurus dengan konsentrasi larutan. Suatu larutan dengan konsentrasi tinggi akan memiliki viskositas yang tinggi pula, karena konsentrasi larutan menyatakan banyaknya partikel zat yang terlarut tiap satuan volume. Semakin banyak partikel yang terlarut, gesekan antar partikel semakin tinggi dan viskositasnya semakin tinggi pula.
   3.      Berat molekul solute
Viskositas berbanding lurus dengan berat molekul solute. Karena dengan adanya solute yang berat akan menghambat atau member beban yang berat pada cairan sehingga manaikkan viskositas.
   4.      Tekanan
Semakin tinggi tekanan maka semakin besar viskositas suatu cairan.

Referensi:
Bird, Tony. 1993. Kimia Fisik Untuk Universitas. Jakarta : PT Gramedia
Dudgale. 1986. Mekanika Fluida Edisi 3. Jakarta : Erlangga
Respati, H. 1981. Kimia Dasar Terapan Modern. Jakarta : Erlangga
Streeter, Victol L dan E. Benjamin While. 1996. Mekanika Fluida Edisi Delapan jilid I. Jakarta : Erlangga
While, Frank.M. 1988. Mekanika Fluida edisi ke-2 jilid I. Jakarta : Erlangga

Tidak ada komentar:

Posting Komentar